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Bifurcations in dimension 1

d f
d_ltj = f(u,u), £(0,0) =0, %(0,0) =0, p parameter

Saddle - node bifurcation
Assume f is CX, k > 2, in a neighborhood of (0,0), and

of 0*f
%(070) —-37&0, ou 3,2

As (u,p1) — (0,0), f has the expansion
f(u, ) = ap + bu® + o(|p| + u?)
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a>0, b<0 a>0,b>0 a<0, b<0 a<0, boo
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Assume f is CX, k > 3, in a neighborhood of (0,0), and satisfies

o2f | O3F |
f(_U;M) - _f(ualu)7 m(oao) =4 7& 0, ﬁ(ouo) =:06b 7é 0.

Hence, as (u, 1) — (0,0), f has the expansion
f(u, 1) = apu + bu® + of|u|(|u| + u?)], u =0 is an equilibrium for all p.
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& — F(u.), F(0,0)=0

F is C¥, k > 3, in a neighborhood of (0,0).

Define L := D,F(0,0). Assume L has a pair of complex conjugated purely
imaginary eigenvalues +iw, w > 0: L¢ = iw(, L{ = —iwC.

Normal form theorem (seen later): for any integer p < k, and any p
sufficiently small, there exists a polynomial @, of degree p in (A, A), with
complex coefficients functions of y, taking values in R?, such that

®4(0,0) =0, 0a®0(0,0) =0, 07%0(0,0) =0,
u=A(+ A+ ®,(AA), AcC,
transforms the system into the differential equation

dA
— = iwA+AQ(IA%, 1) + o(A”), Q polynomial in A[?, Q(0,0) =0,
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Hopf bifurcation - continued

dA .
7 = WA+ Alap + bIAI%) + o(IAI(|l + A]%)),

Assume a, # 0 and b, # 0.
Truncated system: set A = re/®,

d

d—; = r(arp+ b,rz) (pitchfork bifurcation for radial part)

d

d_(f = w+ aju+ bir?, (frequency of bifurcated periodic solution)

WW”

case a, >0, b, <0 | -
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Hyperbolic situation in R”

du _
dt

F(u), F(0) =0, DF(0) =L
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Hyperbolic situation in R"” continued

u=X+Y, X=PueE, )Y=P_ueE_

dX
Y
‘:j—t — LY4PRX+Y)

Unstable manifold M : solve in u(t),t <0, with u(t) - 0ast — —o0

t

t
u(t) = eb+iX + / e+t P R(u(s))ds + / el=(t=9)p_R(u(s))ds
0 —o0
Then, by implicit function theorem, u(t) = ¢, (X, t),
and u(0) = ¢ (X,0) = X + W (X), with W (X) € E_
ﬂ rsité
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Center manifold in R”

Pliss 1964, Kelley 1967, Lanford 1973, Henry 1981, Mielke 1988, Kirrmann 1991,
Vanderbauwhede - looss 1992

d

d—‘t’ = Lu+ R(u, p), (u,p1) € R" x R™, R(0,0) = 0, D,R(0,0) = 0.
spectrum of L =0 = o_ U0y
Hypothesis: g = finite number of eigenvalues of finite mutiplicities
Suprxeco_ A < —v < 0 (gap assumption)
RT'=E@®E_, u=X+Y, X=Pu,Y=P_u

E, Ey
E,
)| L / —()
/
ﬂv»

. . . . . L
left: linear case for u = 0, asymptotic solutions € Eg, right: non linear case
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Center Manifolds- idea of proof

Theorem:

MM = {U = ug + W(UO,M), (Uo,ﬂ) € Ey x Rm}
v e CKOy, E_), Oy neighb of 0in Ey x R™
w(0,0) = 0, D,,W(0,0) = 0.

M,, locally invariant and locally attracting.
Idea of proof: Even though u(t) stays bounded for t € R, the first term
and the integral below with Ly may grow polynomially in t as t — —o0.

t t

u(t) = ebotX + / el =) pyR(u(s))ds + / et=(t=)p_R(u(s))ds.

0 —00

Need of a (smooth) "cut-off’ function on Ep, modifying and making the
system linear for its part in Ey, outside a ball of small radius. This allows
to work in a space of functions growing at infinity.
New complications due to the fact that we deal with such functions (whlch
may grow at —oo with a small exponential). L R

G. looss (IUF, Univ. Nice) water waves 9 /34



Center Manifolds in infinite dimensions

du_
dt
R(0,0) =0, D,R(0,0) =0

L linear bounded Z — X,

Z cont. embedded in X (both Hilbert spaces)

R:(Z x R™) — X of class CK, k > 2 in a neighborhood of 0
Hypothesis:

(i) (gap assumption) spectrum o of L = oo Uo_,

For A € o9, ReA = 0,

SUprxeo_ ReX < —y < 0;

(ii) oo = finite number of eigenvalues of finite mutiplicities

Lu+ R(u, p)

o~
Rt

[
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Center Manifolds in infinite dimensions - continued

Hypothesis on the linearized system

|| (iwl — L)_1|\£(X) < ﬁ for w € R, |w| large.
w
Then the following properties (iii) and (iv) are satisfied.
Define:
Eo=PoX = PoZ, Zp = PhZ, X =& & Xp, Z = E ® Zp,n € [0,7]

(iii) L2 = Lyup + £, £ € COR, X), supeere™||f(t)]|x < o0,
Then, there exists a unique up = Kif, such that

Knf € CO(R, 2), suprere™||Knf(t)||z < C(n)suprere™||f(t)||x,
C(n) continuous on [0,~].

(iV) % = Lhuh, U‘tzo € Zp.

Then, there exists a unique u, € CO(RY, Z4), [|upllz < e, t > O',..

[

Hmvmué
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Reduced system for asymptotic dynamics and Symmetries

du
d—to = Loup + PoR(up + W(ug, 1), p) := f(uo, 1)

f(0,0) = 0,D,f(0,0) = Lo, spectrum of Ly : o

Frequent case: 0 is a solution of the system for any u
R(0, ) =0, hence W(0, 1) =0, f(0, ) =0 and

the linear operator A, := D,,f(0, 1) has the eigenvalues close to the
imaginary axis of the linearized operator L, := L+ D,R(0, )
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Reduced system for asymptotic dynamics and Symmetries

duo

—r = lLowot PoR(uo + W(uo, n), pt) := f(uo, n)
f(0,0) = 0,D,f(0,0) = Lo, spectrum of Ly : o
Frequent case: 0 is a solution of the system for any u
R(0, ) =0, hence W(0, 1) =0, f(0, ) =0 and
the linear operator A, := D,,f(0, 1) has the eigenvalues close to the
imaginary axis of the linearized operator L, := L+ D,R(0, )
Presence of symmetry

TLu = LTu, TR(u,u) = R(Tu, )
Tle, = To is an isometry
Then

Tw(“Oy,U«) = W(T()Uo,u), for ug € & _
Tof(uo, n) = f(Touo, ). (O S

[
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Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of (up, i) € & x R™

duh

dUO
Dw“’(”Oaﬂ)I =

replace ‘Z’t" by Louo+ PoR(uo + W(uo, 1), ),
and replace d;t” by LpW(uo, )+ PrR(uo + W(ug, i), 1)
and identify powers of (ug, jt).
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Computation of center manifold and reduced system

NB. We compute Taylor expansions, in powers of (up, i) € & x R™

D W (g, ) S0 = L
replace ‘Z’t" by Louo+ PoR(uo + W(uo, 1), ),
and replace d;t” by LpW(uo, )+ PrR(uo + W(ug, i), 1)
and identify powers of (ug, jt).
Example: quadratic order in up:
f(uo, ) = Loug + PoRoo(up) + PoRo,1(1) + h.o.t., h.o.t. depends on W
Du0w2 o(u())LouO — LpWy 0(U0) PhR> O(UO) leads to
v, 0(U0) = f L”tPth o(e LotuO)dt
This may become tedious, and may lead to a complicate vector field in &,
in case of dimension > 1, specially if orders > 2 are required.
Our purpose now is to simplify the reduced system, in using Symmetries
and Normal form theory. ~T
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Normal forms

Poincaré, Birkhoff, Arnold, Belitskii, Elphick et al...
p > 2, 3 polynomial &, : & — &y, of degree p and a neighborhood Op of
0 in & x R™, such that the local change of variable in &

up = vo + ®,(vo)
transforms the reduced system into a new system where N, is a

polynomial of degree p such that

dvp
dt

= Lovo + N, (vo) + p(vo, 1),
No(0) = 0, DVONQ(O)
eLStNu(Vo) = NM( Lo VQ) V(t Vo) €R x &,
p(vo, ) = o([[wl[?).

NB. In case of analytical vector fields, there are results optimizing the~
degree p, giving a rest p exponentially small (G.l., E.Lombardi 2005)*"""""
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Normal forms - continued

Equivalent characterization:

DN, (v)Lgv = LgN,(v) for all v € & and p € R™
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Normal forms - continued

Equivalent characterization:
DN, (v)Lgv = LgN,(v) for all v € & and p € R™
Case of a linear operator L + R, Rp =0

interesting when L is not diagonalizable.

Then &, is linear (only degree 1 terms); the normal form L+ N, is also
linear, and

N,L* = L*N,.

ﬂ
He
=
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Normal forms - continued

Equivalent characterization:

DN, (v)Lgv = LgN,(v) for all v € & and p € R™

Case of a linear operator L + R, Rp =0

interesting when L is not diagonalizable.

Then &, is linear (only degree 1 terms); the normal form L+ N, is also
linear, and

* [ *
N,L*=L"N,.
Cases with Symmetries Assume that the nonlinear system is equivariant

under an isometry T in R”
Then, polynomials N, and ®, commute with T. ™

G. looss (IUF, Univ. Nice) water waves 15 / 34



Normal forms - idea of proof

du/dt = Lu+ R(u), u € R", p is a given number > 2. No u here, for
simplification.
R(u)= > R(uD)+ o(||u]|P),

2<q<p

R is g-linear symmetric on (R")9. Analogous notation for ®, and N.
Differentiate u = v + ®(v) with respect to t, and replace du/dt and
dv/dt:

(I+ Do(v))(Lv 4+ N(v) + p(v)) = L(v + ®(v)) + R(v + @(v))
Identify powers of v:

ALq)q = Qq — Nq, q = 2,3, Py QQ = R2
A®(v): = DO(v)Lv — Ld(v) for all v € R".

Qg —Ng € ker(Ap )i, i.e. we can choose Ng = 'Dker(AL*)Qq- and ~

¢, € ker(AL)* (makes the solution uniquely determined). | W
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Computation of Center Manifold and Normal form

Center manifold theorem gives

u=uy+ W(ug, p),up € & and W(ug, p) € Zp,
Normal form applied to the reduced system for ug € &p:

dv,
ug = vo + ®,(vo), d—to = Lovo + N, (vo) + p(vo, 1)

Consequently, we can write

u= vy + W(vo, 1),

with
W(vo,p) = ®u(vo) + W(vo + P (), 1) € Z.

ITJ(VO,,U,) belongs to the entire space Z, and not to Zp,. i

[
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Computation of Center Manifold and Normal form -

continued

Differentiating with respect to t and replacing du/dt and dvy/dt, leads to

DVO{B(V07 ,LL)LOVQ - L{IV,(V(L ,LL) + NM(VO) - Q(VO7 ,LL),

Q(vo, 1) = My (R(vo + W(vo, 1), 1) = Dy W(v0, 1IN (v0) )

M, represents the linear map that associates to a map of class CP the
polynomial of degree p in its Taylor expansion.

Projecting on & and Z, gives :

ALO‘T’O(VOM)—FNM(VO) = Qo(vo, 1)
Dy, Wp(vo, pt)Lovo — LaWh(vo, ) = Qn(vo,p),

where

QO(V07N) = PoQ(Vo,M), Qh(VOHU’) = PrQ. me

[
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Example: Hopf bifurcation

oo ={tiw}, Lo¢ =iw(, peR

u=vo+W,(v), Yu(vw)eZ

For vo(t) € &, it is convenient to write

w(t) = A(£)C + A(DG,  A(t) € C,

and since N, (A, A) = (AQ(|A[?, 1), AQ(|Al?, 11)), the reduced system
reads

dA . —
E = iwA+ AQ(’AF? ,LL) + p(A,A, ,LL)

Q complex-valued, polynomial in its first argument, with Q(0,0) = 0.
We need to compute coefficients a and b in

Q(IA]?, 1) = ap + BIAP + O((|ul + |A]*)?). .
Rt

[
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Example: Hopf bifurcation - continued 1

wa(véq)7ﬂ(/)) =y Z ANATW g g1, Wgig € 2.
q1t+q2=q

By identifying the terms of order O(u), O(A?), and O(AA), we obtain
—LWo01 = Roi,
(2iw — L)Wao = Rx((,¢),
—LW10 = 2Rx(C,C).

Operators L and (2iw — L) are invertible, so that Wgp1, Wago, and Wiig
are uniquely determined . Next, identify the terms of order O(uA) and
O(A?A) :

(iw = L)Wy = —a¢+ Ri1(¢) +2R20(¢, Woor),
(iw— L)Wo1g = —bC+ 2Rp0(¢, Wi10) + 2R20(¢, Wago) + 3R30(¢, (@Z)
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Example: Hopf bifurcation - continued 2

The range of (iw — L) is of codimension 1, so we can solve these equations
and determine Wig; and Wyqo, provided the right hand sides satisfy one
solvability condition.

The solvability condition is that the right hand sides be orthogonal to the
kernel of the adjoint (—iw — L*) of (iw — L). The kernel of (—iw — L*) is
spanned by (* € A* that we choose such that (¢,(*) = 1. Then

a = (Rui(¢)+ 2R20(¢, Woo1), (™),
= (2Rx0(¢, W110) + 2R20(C, Wa00) + 3R30(¢, ¢, €), ¢7).

o~
Rt

[
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Example: Hopf bifurcation with O(2) symmetry

Assume that we have a group {Ry,S; ¢ € R/27Z} representation of an
O(2) symmetry in X and Z: we have S, and R, with S2 =1, and

R,S = SR_, forall p € R/27Z
Ro,oRy = R iy forall ¢, ¥ € R/27Z
Ry, = 1

Assume that our system commutes with this representation of O(2):
SL=1LS, R(Su,u) =SR(u,u) for all p € R

and R,L = LR, ,R(Ryu, 1) = R,R(u, p) for all ¢ € R/27Z, u € Z, and
uweR.

N

[

Hmvmué
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Hopf bifurcation with O(2) symmetry - continued 1

Assume that o9 = {£iw}, and eigenvectors are not invariant under the
action of R,.

Notice that any eigenvalue A of L that has an eigenvector  not invariant
under the action of Ry is at least geometrically double.

Generically, +iw are algebraically and geometrically double eigenvalues.
Then the restriction of the action of R, to the eigenspaces associated with
the eigenvalues tiw is not trivial, and we can choose the eigenvectors
{Co, (1} associated with iw such that

R,(o = €™y, RyG1=e"™¢, Sl=7C, SG=C.

{Cy, (4} are the eigenvectors associated with —iw.

» ?EC)

G. looss (IUF, Univ. Nice) water waves 23 /34



Hopf bifurcation with O(2) symmetry - Normal form

u = v+ lT’(Vo,u) vy € &, N(Vo,u) € Z,
w(t) = A(t)¢o + B(t)¢1 + A(t)¢, + B(t)C;-

\Tl(-,,u) commutes with R, and S. Define N, = (®o, ®1, Pg, 1), where
®;, j =0,1, are polynomials of (A, B, A, B) with coefficients depending
upon p. Using successively the characterization theorem and the fact that
N, commutes with R, and S, we find that

¢0(e_i“’tA, e—ith’ eith’ eiwtg) e_thd)o(A, B,Z, §)7
¢1(e_i“’tA, e—ith’ eith’ eiwtg) — e_i“’td)l(A, B,Z, §)7
Oo(ePA, e B e A M B) = e dy(A, B, A, B),
<D1(e"m“0A, e 'MYB eTIMPA, eim“DE) = e_im“pd>1(A, B,A, B),
®o(B,A,B,A) = ®1(A B,AB)

-
for all t € R and ¢ € R/27Z. | g
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Hopf bifurcation with O(2) symmetry - Normal form-

continued

dA S

— = WA+ A+ blAI? + c|B[?) + p(A, B, A, B, 1)
B _

‘;—t = iwB+ B(au+ b|B|? + c|A]?) + p(B, A, B, A, 1),

with p(A, B, A, B, 1) = O((|A| + |BI)(|A]* + |BI? + |ul)?)-

A=rpe® B =re?, then for the truncated system

do

d—to = w+aiM+bif§+Cif12,

do

== w+a,-u+b,-r12+c,-r§-

dt @m‘"é
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Hopf bifurcation with O(2) symmetry - Dynamics

dl’o
E = rO(ar,U + brrg + Crrlz)’
dr1
E = rl(ar,u + brrl2 + Crrg)’

i
B

phase portraits in the (rg, r1) plane, in the case a, ;. > 0. For b, < 0 two
pairs of equilibria (£r.(x),0) and (0, £r.(u)) corresponding to rotating
waves. For b, + ¢, < 0 pair of equilibria with ry = ry, corresponding f"*

standini waves.
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Couette - Taylor hydrodynamic problem

z!
|

ov
8—+(V V)V + Vp—VAV V-V =0, + Boundary Cond.

Couette flow In cylmdrlcal coordinates (r, 0, z)

2
VO = (0,v(r),0), p© =) / % g

vo(r) = QR — R} - (Q1 — Q)RZR3 1 |
° R? — R? R — R? r | g
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Couette - Taylor problem (2)

Weset V = VO 1 U p=pO 4 pgq,

%—‘tj = vAU— (VO .V)WU—-U-V)IVO _(U-V)U-Vgq

V-U = 0,U|,—p,.g, =0

Periodicity condition in the axis direction:
U(x + he;, t) = U(x,t), Vp(x,t) = Vp(x + he,, t) completed by a zero
flux condition through any section of the cylindrical domain.

:{Ue(L2(Z><(R/h2)))3;v.u:o, U- nlosxr =0, /U-ndSzO
>

_ {U € X;U e (H(Z x (R/hZ)))>, Ulosxn = 0}

The orthogonal complement of X in (L?(X x (R/hZ)))3 is the space
{Ve; ¢ € HY(Z x (R/hZ)) + zR}, i.e., V¢ is a periodic function, whgle 9
is not periodic .
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Couette - Taylor problem (3)

% = LU+ R(U), in X for U(-,t) € Z

LU =y (I/AU (VO .v)U - (U- V)v(o)) , R(U) = —Mo (U - V)U).
Representations of symmetries commuting with the system
(r2U)(r,0,2z) = U(r,0,z+ a), a€ R/hZ,
(SU)(r,0,z) = (U/(r,0,—2),Uy(r,0,—2z),—U,((r,8,—2)),
(R¢U)(r7972) = U(r79+¢72)7 ¢ER/27TZ,
satisfy (O(2) action)

Tas = ST—37 Th —_= ]L TaTb — Ta+b
(-
R, represents a SO(2) action, which commutes with the O(2) action 1
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Couette - Taylor problem (4)

Three dimensionless parameters appear in the equations:

Q, - &’ . &’ o Fiu(Re— Ri)

Ql R2 1%
Fixing €, and 1, we take R as bifurcation parameter, and denote L by L.
For low values of R, the spectrum of Ly is strictly contained in the left
half-complex plane, i.e., the Couette flow is stable.
Instabilities are obtained by increasing R (for instance by increasing the
rotation rate of the inner cylinder).
The Case Q, >0 or Q, < 0 Close to 0
In this case it has been shown numerically that as R increases, there is a
critical value R, for which an eigenvalue of Lz crosses the imaginary axis,
passing through 0 from the left to the right, and all other eigenvalues
remain in the left half-complex plane.
0 is a double eigenvalue with complex conjugated eigenvectors

¢ = e*?U(r), ¢ =S¢, T2 = %3 for all a € R.
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Couette - Taylor problem (5)

Two-dimensional center manifold: U = A( + A + W(A, A, i)
Reduced system in C: & = f(A, A, 1)

Symmetries: f(A,A,u) = f(A A u)
fle*ap e TA 1) = e*f(A A, pu), forany ac R

Then 2 = Ag(|A, 1) = apA + bAJA]> + h.o.t., coef o and b € R.

a >0, b <0 when Q, >0, and b changes sign for a small value Q, <0

AN

w<0 > 0 circle of stable equilibria

Uo and 7, Up = Uy invariant under S implies horizontal cells. [ R
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Couette - Taylor problem (6)

Z

@ N o
=] e B | I R [ B e e I
SR KRS [ 8 B B
e P I (o R
S e e o] o] le— ko~
IR ool o] O e A~
o R N o
o pzesrs) O O] L e
ST TR | o] 9] L RO~
(i) (i) (iii) (iv)

(i) Side view of Taylor vortex flow. (ii) Meridian view of Taylor cells.
(iii) Helicoidal waves (traveling in both z and 6 directions).
(iv) Ribbons (standing in z direction, traveling in 6 direction) m
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Couette - Taylor problem (7)

Case Q2, < 0, not too close to 0

Numerical results show that the Couette flow first becomes unstable at a
critical value R of R, when a pair of complex conjugate eigenvalues of
L crosses the imaginary axis, from the left to the right, as R is increased,
and the rest of the spectrum stays in the left half-complex plane. These
two eigenvalues are both double, as this case is generic for O(2)
equivariant systems, with two eigenvectors of the form

(o= ei(kcz-l—mG)U(r)’ (= ei(—kcz—f—mé')sa(r)’

where m # 0 (non-axisymmetric eigenvectors).
Four-dimensional center manifold, and the reduced vector field commute
with the actions of symmetries :

TaC0 = €%, T (1 =e"%, SCG=C SG = o
RyCo = €™y, Ry(1 = €™
We are here in the presence of a Hopf bifurcation with O(2) symmet%
with an additional SO(2) symmetry represented by R,. £
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Couette - Taylor problem (8)

The dynamics are ruled by a

dA
dt
dB
dt

system in C? of the form
= AP(|A]%, 1B, 1)

= BP(|B|27 ‘A‘znu)?

p=TR—Re, and P(|A]?,|B|?, 1) = iw + au + b|A]? + c|B|?> + h.o.t.

is a smooth function of its arguments, with no “remainder p.”

Solutions corresponding to A =0 or to B = 0 travel along and around the
z-axis with constant velocities. These are helicoidal waves, also called
spirals, and they are axially periodic just as the Taylor vortex flow.

The bifurcating solutions obtained for |A| = |B| are standing waves
located in fixed horizontal periodic cells, as they are for the Taylor vortex
flow, but with a non-axisymmetric internal structure rotating around the

axis with a constant velocity.

G. looss (IUF, Univ. Nice)
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